
Off-by-one Overflow

I Overflow a buffer, but only by one byte

I Realistic!

I String terminator makes buffer exceed boundary
I while (i <= max) ...
I for (i = 0; i <= max; i++) ...



Off-by-one Overflow

I Overflow a buffer, but only by one byte
I Realistic!

I String terminator makes buffer exceed boundary
I while (i <= max) ...
I for (i = 0; i <= max; i++) ...



Off-by-one Overflow

I Overflow a buffer, but only by one byte
I Realistic!

I String terminator makes buffer exceed boundary

I while (i <= max) ...
I for (i = 0; i <= max; i++) ...



Off-by-one Overflow

I Overflow a buffer, but only by one byte
I Realistic!

I String terminator makes buffer exceed boundary
I while (i <= max) ...

I for (i = 0; i <= max; i++) ...



Off-by-one Overflow

I Overflow a buffer, but only by one byte
I Realistic!

I String terminator makes buffer exceed boundary
I while (i <= max) ...
I for (i = 0; i <= max; i++) ...



The stack and related registers

Two important registers:
I %ebp (Frame Pointer)

I %esp (Stack Pointer)



The stack and related registers

Two important registers:
I %ebp (Frame Pointer)
I %esp (Stack Pointer)



The stack and related registers
Two important registers:

I %ebp (Frame Pointer)
I %esp (Stack Pointer)

buffer
registers

saved

%esp %ebp

saved %eip

function

params

saved %ebp

higher addresses

points to last saved %ebp

Figure: The stack with focus on %ebp and %esp



Overflow

I Little Endian Architecture

buffer 0xef 0xbe 0xad 0xde

higher addresses, direction of writing

Figure: %ebp overwrite in detail



Push and Pop

I Putting data on the stack, and getting it back

I Uses stack pointer %esp for operations
I Push decrements %esp by 4 and stores value where %esp

points to
I Pop fetches value from where %esp points to and

increments %esp then by 4



Push and Pop

I Putting data on the stack, and getting it back
I Uses stack pointer %esp for operations

I Push decrements %esp by 4 and stores value where %esp
points to

I Pop fetches value from where %esp points to and
increments %esp then by 4



Push and Pop

I Putting data on the stack, and getting it back
I Uses stack pointer %esp for operations
I Push decrements %esp by 4 and stores value where %esp

points to

I Pop fetches value from where %esp points to and
increments %esp then by 4



Push and Pop

I Putting data on the stack, and getting it back
I Uses stack pointer %esp for operations
I Push decrements %esp by 4 and stores value where %esp

points to
I Pop fetches value from where %esp points to and

increments %esp then by 4



Leave

I Opcode used when leaving the frame

I mov esp, ebp (%esp is set to %ebp)
I pop ebp (ebp is set to the saved ebp (!))



Leave

I Opcode used when leaving the frame
I mov esp, ebp (%esp is set to %ebp)

I pop ebp (ebp is set to the saved ebp (!))



Leave

I Opcode used when leaving the frame
I mov esp, ebp (%esp is set to %ebp)
I pop ebp (ebp is set to the saved ebp (!))



Ret

I Opcode to make a function return

I pop eip (eip is fetched from where esp points to (!))



Ret

I Opcode to make a function return
I pop eip (eip is fetched from where esp points to (!))



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us

I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us

I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful

I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us

I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us

I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful

I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame

I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us
I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us
I Leave Step 2 (old %ebp popped back to %ebp)

I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us
I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us
I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us
I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us
I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from


