
Off-by-one Overflow

I Overflow a buffer, but only by one byte

I Realistic!

I String terminator makes buffer exceed boundary
I while (i <= max) ...
I for (i = 0; i <= max; i++) ...
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Figure: The stack with focus on %ebp and %esp



Overflow

I Little Endian Architecture

buffer 0xef 0xbe 0xad 0xde

higher addresses, direction of writing

Figure: %ebp overwrite in detail
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I Putting data on the stack, and getting it back

I Uses stack pointer %esp for operations
I Push decrements %esp by 4 and stores value where %esp

points to
I Pop fetches value from where %esp points to and

increments %esp then by 4
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I Opcode to make a function return
I pop eip (eip is fetched from where esp points to (!))



Putting it together

I Overflow by one byte → Old %ebp partly controlled by us

I Leave Step 1 (%esp set to %ebp) → Not harmful
I Leave Step 2 (old %ebp popped back to %ebp)

I Current %ebp partly controlled by us

I Ret (old %eip popped from stack) → Not harmful
I Now back in caller function frame
I Leave Step 1 (%esp set to %ebp)

I Current %esp partly controlled by us

I Leave Step 2 (old %ebp popped back to %ebp)
I Ret (old %eip popped from stack)

I We partly control where %eip is popped from
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