
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Bachelor’s Program in Computer Science

Bachelor’s Thesis

Predicting Security Vulnerabilities from Function Calls

submitted by

Christian Holler

on September 26, 2007

Supervisor: Prof. Andreas Zeller

Advisor: Dipl. Inform. Stephan Neuhaus

Reviewers: Prof. Andreas Zeller
Prof. Wolfgang J. Paul

Statement

Hereby I confirm that this thesis is my own work and that I have docu-
mented all sources used.

Saarbruecken, September 26, 2007

Christian Holler

Declaration of Consent

Herewith I agree that my thesis will be made available through the li-
brary of the Computer Science Department.

Saarbruecken, September 26, 2007

Christian Holler

Contents

1 Introduction 5

2 Related Work 7

3 Method and Implementation 9
3.1 General Definitions and Information 9

3.1.1 Definitions . 9
3.1.2 Environment . 10

3.2 Feature Extraction from Source Code 11
3.2.1 Function Calls . 11
3.2.2 Implementation . 13

3.3 Automated Testing . 13
3.3.1 Classification . 14
3.3.2 Regression . 15
3.3.3 Implementation . 17

3.4 On-Road Test . 18
3.4.1 Test Setup . 18
3.4.2 Implementation . 18

3.5 Performance . 19

4 Evaluation of Results 23
4.1 Automated Testing Results . 23

4.1.1 Classification . 23
4.1.2 Regression . 24

4.2 On-Road Test Results . 25

5 Threats to Validity 27

6 Conclusion and Future Work 31

3

4 CONTENTS

Chapter 1

Introduction

Security vulnerabilities in software do not only pose a risk to our data and privacy but
also cause major financial loss1. Unfortunately, such vulnerabilities are hard to find,
especially in huge projects, and searching for them is not only a time-consuming but
also an expensive process. Of course, one could completely avoid security vulnerabili-
ties by completely specifying the software and then proving the correctness, however,
this is rarely done nowadays, mainly because the complexity makes the whole process
very expensive and time consuming.
In this thesis, we will see a statistical approach to aid in this search. More precisely,
I will evaluate the suitability of functions calls as statistical predictors for security
vulnerabilities, using the Mozilla Project [2] source code and a provided database of
known vulnerabilities. The main reason for the choice of function calls as a predictor is
that the Vulture project [1] has already reported good results with imports as a predictor.
The required database was previously mined from the Mozilla CVS and contains all
known security vulnerabilities from 2005 to January 2007. Figure 1.1 explains the
relationship between all involved elements, both the vulnerability database and the
source code serve as an input for our machine learning process which again creates a
predictor that can be used for several purposes. In this case, a new component is tested
to find out how likely it is to contain vulnerabilities. More information on Mozilla, the
mining process and vulnerabilities can be found in Section 3.1.
The first question that arises when we look at vulnerabilities and function calls is most
likely

“Are there correlations between function calls and security vulnerabilities?”

If we find such a correlation, we need to evaluate if it is suitable to predict vulnera-
bilities. This step is described in Section 3.3. If the evaluation shows an acceptable
accuracy, this correlation could be used to narrow down the search space for unknown
vulnerabilities in large projects, effectively saving time and money. Another question
consequently is

“Can these correlations be used to accurately predict security vulnerabilities?”

If this is the case, this method could also be used for several other practical applica-
tions. For example developers could be alerted when they introduce new code that

1An FBI study published in 2005 states a loss of 67 billion USD through computer crime

5

6 CHAPTER 1. INTRODUCTION

contains possibly risky patterns of function calls, preventing security vulnerabilities
from reaching production code. So we ask ourselves

“How well does this method work in practice?”

Both to answer this question and to give an example for predicting, I will compile a list
of newly found vulnerabilities in the period from January to July 2007 and evaluate,
how well these vulnerabilities can be predicted using a “leave one out”-method to do
predictions for single components (See Section 3.4).

Known
Vulnerabilities

Machine
Learning

New
component

Predictor

Codebase

produces

predicts vulnerability

Code
Code

Features

Component Vulnerability Mapping

provides

provides

Component Features Mapping

Figure 1.1: Relationship between CVS, vulnerabilities and predictions

Chapter 2

Related Work

As already mentioned in the introduction, this thesis is based directly on the Vulture
project [1], developed by Stephan Neuhaus et al., where they evaluate the quality of im-
ports as a predictor in a similar way. Because their evaluation showed good results and
function calls provide more detailed information as compared to imports, the results
for function calls are expected to be even better.
The idea of looking at the history of components was already applied in a work by
Schröter et al. [19] who investigated correlations between imports and general defects.
However, this work was not focusing on security vulnerabilities.

Further related studies are:

The evolution of defect numbers, researched by both Ozment et al. [11] and Li et
al. [10]. These studies deal with the evolution of the numbers of security vulner-
abilities and defects over the time and came to different conclusions. Ozment et
al. report a decrease in the rate at which new vulnerabilities are reported, while Li
et al. report an increase. However, neither allow a mapping between components
and vulnerabilities or a prediction.

Describing security vulnerabilities with models, researched by Chen et al. [15]. In
their paper they deal with the difficult task to depict and reason about security
vulnerabilities using data from bugtraq and source code examination. This work
and mine have in common that both a vulnerability database and the source code
are used as starting point. Chen et al. use finite state machines to model vulnera-
bilities and using this model, many common types of vulnerabilities are decom-
posed to simple predicates to understand how and why they occur, however, they
do not predict new vulnerabilities.

More practical approaches to reduce the number of security vulnerabilities, include:

Testing the binary. These approaches are directed at the running program and com-
prehend methods like fuzz testing [16, 17] and fault injection [14]. Briefly, these
methods find vulnerabilities by provoking faults with either specially synthesized
or random input and monitoring the program behavior.

Static source code analysis, focusing on specific types/forms of security vulnerabili-
ties. Specifically, there are several tools for the detection of buffer overflows in
C and C++ such as “Mjolnir”, described by M. Weber et al. in their work [12].

7

8 CHAPTER 2. RELATED WORK

There are also more generic scanners, such as ITS4, a security vulnerability scan-
ner for C and C++ code developed by Viega et al. [13]. This scanner is based
on known risky patterns that are often associated with security vulnerabilities.
However, most of these methods are either specific to one or several types of
vulnerabilities, or require static patterns (used in ITS4), that need to be updated
constantly. Also, such methods might not able to recognize vulnerabilities which
have a bigger context, across several components.

Runtime detection and prevention of exploits. There are implementations for run-
time countermeasures available for the Linux kernel, such as PaX which is a
part of the grsecurity package [7]. PaX generally aims at preventing any form
of arbitrary code execution, e.g. through buffer overflows or heap corruption.
Grsecurity also implements other methods to lower the risks of a successful at-
tack, such as role-based access control lists. Another familiar implementation of
role-based ACLs is SELinux [9].

However, these methods were not designed to find and prevent security vulnera-
bilities, but to lower chance for a successful exploit and its impact once an exploit
was successful.

Chapter 3

Method and Implementation

3.1 General Definitions and Information

As stated before, the Mozilla project plays an important role because it is used for all
evaluations described in this thesis. We should therefore have a look at relevant data
from this project, especially at the process of discovering/fixing vulnerabilities and how
many vulnerabilities have been discovered in the past.
Mozilla is a fairly large project, it currently consists of 10452 C/C++ components (see
Definition 3.1) and lots of additional javascript files. The source code has a total size of
about 800 megabytes. Since 2005, the project of course had several security problems,
and in total, 424 components were affected by security vulnerabilities. Compared to
the total number of components, this is a very low percentage (approximately 4%).
The process of reporting, publishing and fixing vulnerabilities has been standardized
in the Mozilla project. Vulnerabilities are reported using Bugzilla1, a bug manage-
ment system developed by the Mozilla group. Reports are generally filed by the person
that discovered the vulnerability; most times these are Mozilla developers or external
people such as security specialists and other developers. However, sometimes vulner-
abilities are discovered because they are already being exploited in the wild (0-day
exploit).
Each report has a unique bugid and every CVS commit that is associated with this bug
includes the bugid for later reference. This is an important fact for definition 3.3. Once
a bug has been confirmed and fixed, the report is closed. If the bug was security related,
a Mozilla Foundation Security Advisory (MFSA) is published2, as soon as fixed version
of the product is released.

3.1.1 Definitions

Some of the terms used in this thesis have no universally valid definition. In order to
aid reproduction of my results, we therefore define some core terms.

Definition 3.1 (Component). Unlike in other languages such as Java, declarations and
definitions in C/C++ often reside in different files. Declarations are made in header files

1http://www.bugzilla.org/
2See http://www.mozilla.org/projects/security/known-vulnerabilities.html for a list

9

10 CHAPTER 3. METHOD AND IMPLEMENTATION

whereas definitions are made in the corresponding source file3. Nevertheless, these files
form an unseparable entity that we consider as a component.
This model is suitable because a security vulnerability that affects one of these files of
course affects the whole component. It makes no sense to assign a vulnerability only
to a source file, for example, and not to its corresponding header file.

Definition 3.2 (Component Naming Convention). To give components unique names,
each component name starts with its path relative to the toplevel Mozilla directory. In
many cases, there is a header and a source file as described previously. In this case, the
file extensions are omitted for component naming. Sometimes though, a component
consists of a single file, in this case, the component name will contain the full filename
including the file extension. The following examples clarify this:

mozilla # ls xpinstall/src/nsInstallResources*
xpinstall/src/nsInstallResources.cpp
xpinstall/src/nsInstallResources.h

−→ Component name: xpinstall/src/nsInstallResources

mozilla # ls js/src/jsbit*
js/src/jsbit.h

−→ Component name: js/src/jsbit.h

Of course, to reference to a specific component in this document the path may be
omitted where this does not cause any ambiguities.

Definition 3.3 (Vulnerable Component). To associate components with vulnerabil-
ities, we will obtain the bugids for vulnerabilities from the Mozilla security advisory
website and then use the Mozilla CVS to search for changes that contain this bugid, as
shown in Figure 3.1. As explained earlier in this chapter, all changes that are related to
a given bugreport include the bug id in the commit message.
Therefore we consider every component as vulnerable that has a change log containing
a bugid that is associated with a vulnerability. However, this definition is very broad
and has some problems, see Section 5 for possible problems with this definition.

Definition 3.4 (Neutral Component). A component is neutral when it is not vulner-
able according to definition 3.3. The word “neutral” especially implies that we do
not know exactly whether this component actually has an undiscovered vulnerability.
Therefore, “neutral” should never be mixed up with “invulnerable” as there might be
vulnerabilities present that nobody is aware of.

3.1.2 Environment
All programs that were written in the course of this thesis were in Perl [3] and R [4].
Perl is used for parsing, preprocessing of input data and postprocessing of results,
whereas R is used for the actual predictions. Especially for our machine learning parts,
the e1071 [6] package for R provides the required algorithms. Also, e1071 is one of
the few packages that support sparse matrices for several algorithms during the whole
process of computing and predicting. As we will see later, this provides a great speedup

3This is an idealized model, in practice, short definitions are often placed in header files directly and
declarations can also be made in source files.

3.2. FEATURE EXTRACTION FROM SOURCE CODE 11

Security Advisory Changes Components

Figure 3.1: Mapping vulnerabilities to components through advisories and bug reports

for predictions. Although all programs were written for Linux, they could also run
under Windows with slight modifications since both Perl and R exist for Windows as
well.

3.2 Feature Extraction from Source Code

3.2.1 Function Calls

The Mozilla project is mainly written in C and C++, hence these languages are our
target languages. In these two languages, a function call is an expression that could
cause the control flow to be transferred to a function when it is executed.4 A function
call is characterized by the name of the function and a parenthesized list of arguments.
Another characteristic which is specific to C and C++ is the frequent use of prepro-
cessor statements to modify the code in the preprocessing stage of the compilation
process, to satisfy specific library or operating system requirements. Therefore, most
of this source code cannot be preprocessed without tieing oneself to a specific platform
such as Windows or Linux, effectively causing a loss of source code for other platforms.
Also, preprocessing sometimes requires external headers to be present, especially for
historical versions these are old headers that we cannot supply.
As a consequence, extracting the function calls from the unpreprocessed source code
is the preferred way. However, dynamic dispatch, i.e. parsing with type information
would require compilable source code and even a full static parsing is blighted by
syntax errors caused by some preprocessor statements; see Figure 3.2.
An acceptable solution is to simply treat all occurrences of identifier(. . .) and iden-
tifier<. . .>(. . .) as function calls. Of course, these patterns do not match only func-
tion calls. There are other constructs, both desired and undesired ones, which will be
matched as well. For example:

4This cautious phrasing is necessary because of the possibility of inlining.

12 CHAPTER 3. METHOD AND IMPLEMENTATION

Function definitions

JS_PUBLIC_API(int64) JS_Now() { return PRMJ_Now(); }

Extern Forward declarations

extern JS_PUBLIC_API(int64) JS_Now();

Macro calls

MOZ_COUNT_CTOR(nsInstallLogComment);

Constructor calls

ie = new nsInstallFile(this, [...]);

Some keywords

if (buffer == nsnull || !mInstall) return 0;

Initialization lists

nsXPItem::nsXPItem(const PRUnichar* aName) : mName(aName)

C++ functional-style casts

int(curWidget->fieldlen.length)

Some of these false positives can be avoided easily. Keywords for example are easy to
exclude using a static list of keywords5 and function definitions can be recognized by
the opening curly bracket following the pattern.
Excluding these two points, we still have several sources of false positives, some of
which are desired and some not. Both macro and constructor calls behave similar to
our definition of function calls and should therefore be treated in the same manner.
However, forward declarations, initialization lists and type casts are rather undesired.
Even though I haven’t found any easy heuristics which can be statically applied to
exclude these from our matching, they don’t seem to spoil the results as we will see
later in Chapter 4.

5The full list of keywords is available at http://www.cppreference.com/keywords/index.html

#ifdef XP_OS2
if (DosCreatePipe(&pipefd[0], &pipefd[1], 4096) != 0) {

#else
if (pipe(pipefd) == -1) {

#endif
fprintf(stderr, "cannot create pipe: %d\n", errno);
exit(1);

}

Figure 3.2: Extract from nsprpub/pr/tests/sigpipe.c, lines 85ff. Parsing C
and C++ is generally only possible after preprocessing: attempting to parse these lines
without preprocessing results in a syntax error.

3.3. AUTOMATED TESTING 13

3.2.2 Implementation
The final parser includes all methods to identify function calls as described above as
well as common parsing methods such as exclusion of comments, strings and prepro-
cessor statements from our search space. It takes up only 9 kilobytes or 346 lines of
code.
The parser takes all files, that belong to the component to analyze, as parameters. Af-
ter extracting the function calls from those files, it determines the component name
according to Section 3.2 and outputs the results in the following format:

<component name>: functionA/count functionB/count [...]

Example:

js/src/jsstr: AddCharsToURI/6 js_ExecuteRegExp/4 [...]

Because the parser outputs its results for a single component, a second tool is required
that invokes the parser with the respective files. This tool is called the project parser
and goes through the project directory structure, searching for relevant files, grouping
them together into components and then invokes the parser for each file group.
For more information about the parser speed on the whole project, see Section 3.5.

3.3 Automated Testing
The data provided by the parser can be interpreted as a matrix M which represents the
relationships between all functions f j in the project and its components ci . The matrix
entries describe the number of occurrences of a function within a component, i.e. mi j
is the number of occurrences of the function f j in the component ci .
Using the provided data about past vulnerabilities in the project, we can also associate
each component ci with a value vi indicating the number of past vulnerabilities in this
component, yielding a vector v called the vulnerability vector.
Figure 3.3 shows an example for M and v with fictitious values. Both M and v together
form the basis for all further experiments and their evaluation.
To find statistical correlations between function calls and vulnerabilities in this dataset,
we will use machine learning. When using machine learning, generally a model f is
created using a suitable training set. The general recommendation for the size of this
training set is 2/3 of the whole dataset and we will follow this recommendation for our
evaluation setup. The general idea is to split up the dataset into two parts,

the training set which consists of the matrix MT and the vector x, the parts of v that
correspond to MT , and

the validation set which consists of the matrix MV and the vector y, the parts of v that
correspond to MV ,

and then use the training set to generate a model f that we can apply to the validation
set.
In our case, we will use Support Vector Machines [5] as a special case for machine
learning, because SVMs can also handle data that is not linearly separable. Also, they
are less prone to overfitting than other machine-learning methods, such as k-nearest-
neighbors[20].

14 CHAPTER 3. METHOD AND IMPLEMENTATION

10 4

1 0 0 0 2 0 0 0 6 0
0 0 3 0 0 0 1 0 1 4
0 1 9 0 0 0 0 0 2 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0
0 1 0 3 0 0 0 0 0 0

pr
in

tf
(..

.)
m

dc
al

l(.
..)

ne
w

D
O

M
in

st
()

re
ad

Fi
le

(..
.)

al
lo

cF
ra

m
e(

...
)

ge
tJ

V
M

in
st

()

se
ar

ch
Tr

ee
(..

.)

pa
rs

eD
oc

um
en

t(
)

ge
tD

O
M

st
ri

ng
()

ge
tC

O
M

A
rr

ay
(..

.)

nsIDocument.h
0
5
0

0
0

nsCOMArray

nsDOMClassInfo
nspr_md.h

EmbedGtkTools
MozillaControl.cpp

nsDOMClassInfo has had 10
vulnerability-related bug reports

nsDOMClassInfo calls function
"getDOMstring()" four times

Matrix M

Vulnerability vector v

Row vector

Figure 3.3: Example for feature matrix M and vulnerability vector v.

However, because only approximately 4% of all components are vulnerable, randomly
selecting 2/3 from all components might yield a training set which contains none or to
few vulnerable components. This biased distribution of vulnerable components would
lead to bad prediction results because the SVM would not have enough examples for
vulnerabilities. To avoid this, we will use stratified sampling. With this method, the
dataset is first split up into vulnerable and neutral components and then a random split
is done for each of these sets. After doing so, the 2/3 vulnerable components and the
2/3 neutral components are merged into a single training set, the same is done for the
testing set. Figure 3.5 illustrates the process.
However SVMs support different methods of operation, classification and regression,
and the concrete evaluation of the prediction results depends on the operation mode.
We will now have a look at these modes and how to evaluate them.

3.3.1 Classification

In classification mode, the vulnerability vector needs to be binarized to v′ with v′

j = 1
if v j > 0 and the SVM prediction for a component is either 0 (not vulnerable) or 1
(vulnerable). After training the SVM with the training set, that is MT and x, we can
apply it to our validation set, yielding a result vector ŷ.
To assess the quality of such predictions, there are two generally accepted measures.
First, there is the precision, which describes the correctness of our positive predic-
tions, i.e. how often components are actually vulnerable compared to all components
predicted to be vulnerable. Then, there is the recall, which describes how many vul-
nerabilities were predicted at all, compared to those that could have been found. To
calculate these values, we need to compare the predicted result vector ŷ to our known
result vector y. When comparing these vectors, there are four different situations for
each index j :

True positive: Both y j and ŷ j are 1.

3.3. AUTOMATED TESTING 15

10 4

1 0 0 0 2 0 0 0 6 0
0 0 3 0 0 0 1 0 1 4
0 1 9 0 0 0 0 0 2 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 2 0 0
0 1 0 3 0 0 0 0 0 0

pr
in

tf
(..

.)
m

dc
al

l(.
..)

ne
w

D
O

M
in

st
()

re
ad

Fi
le

(..
.)

al
lo

cF
ra

m
e(

...
)

ge
tJ

V
M

in
st

()

se
ar

ch
Tr

ee
(..

.)

pa
rs

eD
oc

um
en

t(
)

ge
tD

O
M

st
ri

ng
()

ge
tC

O
M

A
rr

ay
(..

.)

nsIDocument.h
0
5
0

3
6

nsCOMArray

nsDOMClassInfo
nspr_md.h

EmbedGtkTools
MozillaControl.cpp

Used to train SVM

Used to produce SVM results

val
idate

train

Known/Expected results

SVM

Figure 3.4: General evaluation strategy.

False positive: The actual value y j is 0 but the predicted value ŷ j is 1.

True negative: Both y j and ŷ j are 0.

False negative: The actual value y j is 1 but the predicted value ŷ j is 0.

Once we have counted how often each situation happens, these values can be used to
compute the precision and recall values which represent the accuracy and the com-
pleteness of the prediction as follows:

Precision = TP/(TP + FP) (3.1)

Recall = TP/(TP + FN) (3.2)

A high precision means a low false positive rate and a high recall means a low false
negative rate. Of course, a high value for precision or recall alone is unsuitable be-
cause a high precision and a very low recall means that we hardly make mistakes in
our positive predictions but we only find a small count of vulnerabilities compared to
the total number. On the other side, a high recall with a low precision means that we
identify lots of vulnerabilities compared to how many we could find, but we also pro-
duce so many false positives that the final result is useless because we can’t distinguish
between them and the true positives. Consequently both values needs to be in balance
and preferrably high.

3.3.2 Regression
In regression mode, the SVM trains with the unmodified vulnerability vector, using the
absolute values to predict the number of vulnerabilities per component. These values
don’t need to be accurate, but can be used to rank components.

16 CHAPTER 3. METHOD AND IMPLEMENTATION

Components

Neutral
components

Vulnerable
components

2/3
neutral

1/3 neutral

2/3 vulnerable

1/3 vulnerable

Ra
nd

om
 s

pl
it Training set

Validation
set

Figure 3.5: Stratified sampling.

True Positive (TP)

False Negative (FN)

Actually has
vulnerability reports

yes no

yes

no

Predicted to have
vulnerability reports

Precision

Recall

True Negative (TN)

False Positive (FP)

Figure 3.6: Precision (TP/(TP + FP)) and recall (TP/(TP + FN)).

Being able to produce a ranking of the most vulnerable components, especially for
those that do only have few or even no known vulnerabilities, could help developers
focus their efforts on a smaller group of components, effectively maximizing their suc-
cess in finding vulnerabilities whilst minimizing effort.
The reviewers of the Vulture paper [1] rejected the use of the Spearman Rank Corre-
lation Coefficient [18] to evaluate how exact the predicted ranking reflects the actual
ranking. Instead, they suggested a cost model that matches the practical scenario where
a manager has to distribute limited resources to audit components:
Assuming that we have the resources to test T components, then these would be best
spent on the top T most vulnerable components, however the order inbetween these
top T is irrelevant. Ideally, the predicted top T components would be the same as
the actual top T components, no matter their order. To evaluate the quality of our
prediction, we hence could compare how many vulnerabilities we can fix with our
prediction compared to the ideal case:
With m being the number of components and ŷ being the predicted vulnerability vector,
we define p = (p1, ..., pm) as a permutation of 1, ..., m such that ŷp = (ŷp1 , ..., ŷpm) is
sorted in descending order. Fixing component p j fixes yp j vulnerabilities, hence fixing
the top T predicted components fixes F =

∑
1≤ j≤T yp j vulnerabilities. However, with

the optimal ordering, with q and yq defined accordingly to p and ŷp, we could have

3.3. AUTOMATED TESTING 17

fixed Fopt =
∑

1≤ j≤T yq j vulnerabilities. We can now use the quotient Q = F/Fopt to
indicate the quality of our prediction. Because 0 ≤ F ≤ Fopt, Q is a value between 0
and 1 and higher values indicate a better ranking.
In a typical situation, the total number of vulnerable components is much smaller than
the number of neutral components, therefore a random selection will almost always
give Q = 0 for small T . In order to be useful in practice, we hence expect a value for
Q that is considerably greater than zero. A good threshold would be 0.5 which means
that at least half of the effort was spent meaningfully.

3.3.3 Implementation

The implementation for the automated testing environment consists of several parts:

The preprocessor translates the parser output described in Section 3.2.2 into a sparse
matrix format that is readable by the read.matrix.csr function provided
by the e1071 package. This format is highly suitable because the matrix is only
sparsely populated and writing out the whole matrix would consume several gi-
gabytes of space whereas the sparse matrix only takes up 2 megabytes. During
the translation, the matrix is also sorted in both dimensions using the lexical or-
der of the function names and components as the sorting criteria. Additionally,
filters can be applied like binarization for the data values, i.e. cutting all non-zero
values to 1 and several filter criterias which remove functions from the matrix.
One motivation for the binarization filter is that absolute values also depend on
the size of a component, so a correlation between the size and the number of vul-
nerabilities could degrade the results. Of course, the preprocessor is also able to
output the vulnerability vector, a index-to-component mapping and several other
useful pieces of information.

The R scripts are responsible for splitting our data as well as training the SVM and us-
ing it to predict the vulnerabilities for our validation set. After reading the sparse
matrix and the vulnerability vector, a stratified sampling is done and the training
process is started with the training set. Once the SVM is trained, the prediction
is done for the testing set and results are written to the terminal. For classifica-
tion, this is simply the table containing the true/false positives/negatives, but for
regression, the scripts already outputs the results as described in Section 3.3.2.
Additionally, each script outputs its random split indices into a file to allow re-
production of our results.

The simulator supervises the execution of the R scripts. To rule out that the results
are only good for one random split, the simulator supports repeating the same
script for a given amount of time, each time using a different random split and
all results are collectively written to one file. Even though a single prediction
process is quite fast, the simulator supports threading for an additional speed
gain on multiprocessor systems.

Several evaluation scripts are then used to summarize a result file for a simulation
instance, e.g. calculating the median of result values; see Figure 3.7

18 CHAPTER 3. METHOD AND IMPLEMENTATION

3.4 On-Road Test
In addition to the automated tests described above, an on-road test with the Mozilla
project and current vulnerabilities would demonstrate that this is indeed a method for
practical use. Therefore I decided to do such a test and the setup is described below.

3.4.1 Test Setup
The automated tests used in this thesis only have information about vulnerabilities
discovered up to January, 2007; however, at the time of test, it was already July and
lots of new vulnerabilities were discovered. A sensible step would be to use these new
vulnerabilities to test the predictive power of our method. In the first step, we hence
need to find all vulnerabilities and map these to components according to Section 3.3.
The second step is prediction and evaluation. The prediction will work using a “leave
one out”-method, in detail a single prediction will be done as follows:
Assuming that we want a prediction for component j (1 ≤ j ≤ m), we use all com-
ponents (1, . . . , m), except the component j itself, to train the SVM. After doing so,
the SVM is used to predict the component j . These steps will be done in regression
mode because regression allows us to better extract a small number of components that
are very likely to be vulnerable. Figure 3.8 illustrates a prediction step for a single
component.
In our test, the above steps will be done for all components 1, ..., m and the result for
each component is recorded. Of course we will use the old vulnerability vector that
does not contain the new vulnerabilities to do our predictions. After the whole test
is finished, we will look at the predicted top 20 of components that were previously
flagged as neutral and see how many of them are now affected by a new vulnerability
and how the vulnerability affects the component6.

3.4.2 Implementation
Prior to any implementation, we first have to get information about new vulnera-
bilities. We can extract these from http://www.mozilla.org/projects/security/known-
vulnerabilities.html. All Mozilla security advisories are listed there with there respec-
tive bugzilla bugid. For our purpose, I compiled a list of new vulnerabilities by hand in
a simple parseable format, listing the MFSA and all bugids related to this MFSA.
Of course, this information could also be parsed from the Mozilla website automati-
cally7, but in this case, it was easier to compile the list by hand. In addition to this list,
we need the full Mozilla CVS which takes about 3.6 gigabytes of downloading. With
these requirements satisfied, the automated scripts can do the rest. They again consist
of several parts:

The CVS parser gets the vulnerability list as input and searches through the CVS
log of each file looking for bugids that are mentioned in this list. It outputs all
components that are affected by any of these bugids with the MFSA number and
the bugid. If a component is affected by two MFSAs and/or bugids, the parser
outputs the component twice with the respective information. This is essentially
a simple re-implementation of the algorithm outlined in the Vulture paper.

6Inspecting how a vulnerability affects a component of course does not work automatically but requires
a qualified human.

7The Vulture project includes a parser for this task.

3.5. PERFORMANCE 19

The parser postprocessor compares the components found by the CVS Parser to our
list of components that are already vulnerable. For our test, we only need the
components that are still listed as neutral in our vulnerability vector. Addition-
ally, this tool outputs more useful information, e.g how many components are
“repeaters”8.

An R script reads the vulnerability matrix and vector and then starts the “leave one
out” prediction, outputting the results for each component into a single file.

An evaluation script reads these results, calculates the top 20 of components that
were previously listed a neutral and are now predicted to be vulnerable, with
the predicted number of vulnerabilities as sorting criteria. Then it compares,
how many of these components are actually vulnerable now according to our
new vulnerability data.

3.5 Performance
Even with the best results, a method is still not suitable for practice when it takes
months or even years to produce results. To demonstrate that the methods described
here also satisfy common performance criteria, table 3.1 shows a detailed performance
breakdown for all time intensive processes.

Process Time

Function call extraction 8 m
SVM Training w/classification and regression 0.5 m
CVS Parsing for on-road test 2.5 m
SVM “leave one out” regression 6 d

Table 3.1: Approximate running times for major method parts described in this thesis

Because the actual prediction parts require under a minute to run, they could even be
used live, while the programmer is still writing the code, or when the code is checked
in, providing full flexibility for the deployment of methods based on these predictions.
One of the reasons why these parts are so fast is the use of sparse matrices. With full
matrices, the training and classification/regression would take almost 20 minutes.
Please note that the implementation for the “leave one out” regression is not threaded.
Using threads and running this on nowadays commonly used multi processor machines
would lead to a massive speed gain as the method is schedulable in parallel on compo-
nent level.

8Components that were vulnerable before and now have even more vulnerabilities

20 CHAPTER 3. METHOD AND IMPLEMENTATION

Preprocessor

Simulator

produces

runs

Code
Code
Parser output

Vulnerability Mapping

Sparse Matrix
&

Vulnerability
Vector

R Scripts

Code
Code

Results

producescollects

Result file

produces

Parser

Evaluation
Scripts

Summary

Figure 3.7: Interaction between implementation parts

3.5. PERFORMANCE 21

SVM
Code

Code
Components

Component
to test

Code
Other

components

train

predict

split

Figure 3.8: Single step in “leave one out” prediction

MFSA bugid [bugid ..]
2007-25 369211 370127
2007-24 387333
2007-23 384384

Figure 3.9: New vulnerabilities since January 2007 in simple format, hand compiled.

22 CHAPTER 3. METHOD AND IMPLEMENTATION

Chapter 4

Evaluation of Results

4.1 Automated Testing Results
In this section we will have a look at the results for our automated tests described in
Section 3.3. However, we will not only look at the best results, but also at other settings
for our matrix preprocessor and see how they changed the results. These are:

• The “binary” setting, each matrix entry mi j is replaced with 1 if mi j > 0 and
else with 0.

• The “stripped” setting, functions which only appear in one component are ig-
nored, as well as function names with a length of 2 or less. The aim is to remove
irrelevant functions to improve the results. When using this setting, the matrix
width is reduced from 93265 to 40224, however, the execution time is hardly
affected.

Both for classification and regression however, it turned out that using the “binary” set-
ting leads to better results, even though binary values provide less precise information.

4.1.1 Classification
For classification, we measure precision and recall for our evaluation as described in
Section 3.3.1. Table 4.1 shows the median results for several settings, based on 100
splits for each setting.

Dataset Precision Recall

Original 50.77% 40.41%
Binary 69.95% 40.14%
Stripped 49.08% 40.94%
Binary and stripped 64.61% 43.71%

Table 4.1: Median values according to cost model described in Section 3.3.2 across
different datasets

The results do not only show that binary values lead to a much better result, but also
that the SVM is able to handle unimportant data that is removed by our filters, the

23

24 CHAPTER 4. EVALUATION OF RESULTS

results are almost the same. Figure 4.1 shows the detailed distribution of all 100 pairs
for the binary dataset. But even more important, for the best dataset

70% of all predictions are correct,
and 40% of all known vulnerabilities were found.

When we compare this to a random selection, with 10452 components and only 424
vulnerable (approx. 4%), then we see that these values provide a tremendous advantage
to simple random guessing.

●

●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●●

●

●●

●

●

●●
●

●
●

●●

●

●●

●●

●

●

●

●●

●

●●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●●

●

●●

●●

●●

●

●●

●

●

●

●●

●

●●
●●

●

●●
●●

●

●

● ●

●

●

●

●

●●

●

●●

0.30 0.35 0.40 0.45 0.50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Recall

P
re

ci
si

on

Figure 4.1: Scatterplot for 100 precision/recall pairs

4.1.2 Regression

Dataset Top 10 Top 30

Original 73.33% 72.19%
Binary 80.91% 84.81%
Stripped 75% 68.28%
Binary and stripped 82.47% 83.33%

Table 4.2: Median values for top 10 and top 30 across different datasets

As expected, the distribution of results across the different datasets is similar to the
results in classification and the binary datasets gives the best results. However, in this
case we see that the stripped binary dataset is slightly better than the binary set, however
these are only minor differences. With the stripped binary set

4.2. ON-ROAD TEST RESULTS 25

82% of all possible top 10 vulnerabilities and 83% of all possible top 30
vulnerabilities were found.

As already explained in Section 3.3.2, with the ratio of vulnerable components to neu-
tral components being very low (roughly 1:25), a random selection would almost al-
ways lead to a total of 0 vulnerabilities found.

4.2 On-Road Test Results

Since January 2007, 68 components that were neutral needed to be fixed because of
vulnerabilities by July 2007. After examining the predicted top 20 of all 10028 neutral
components, a total of 6 components were now actually affected by one or more new
vulnerabilities. That means with only 0.678% of components that are now vulnerable,
we found 8.8% only by looking at the Top 20, i.e. more than twelve times the amount
of vulnerabilities compared to a random selection. After inspecting the bug reports and
CVS commit messages of these vulnerabilities, it was clear that all except one of these
components were either the source of the vulnerability or directly involved with the
vulnerable component. The remaining component that was predicted to be at rank 1,
turned out to be a false positive. A version string inside the component was changed
with a vulnerability bugid in the commit message, however, the component had no
direct relation to the vulnerability. Figure 4.3 shows the list of relevant components
and their result of manual inspection.

Component Name Bug Id Detailed information

2 jsscope Bug 381374 Assertion failure in component,
allowing to crash program

Bug 364657 Possible crash in another component,
fix includes major code addition to
this component

7 nsSliderFrame Bug 344228 Component was using the
nsIScrollbarMediator
component in an insecure way

9 nsTableRowFrame Bug 370360 Actual bug in
nsTableRowGroupFrame but
components seem very similar in
their domain

10 nsFrameManager Bug 343293 Crash bug, missing assertions and
checks in this component

nsFrameManager Bug 363813 Component not directly affected but
source code changes made because
of this bug

18 nsIContent.h Bug 382754 Bug report not publically accessible
but CVS shows that this is one of
two files changed with identical
commit message

Table 4.3: Components in our prediction that are now actually vulnerable, with # indi-
cating the predicted rank

26 CHAPTER 4. EVALUATION OF RESULTS

With 4 hits in the predicted top 10, based on the vulnerabilities discovered in only half
a year, this is a really good result. If the Mozilla team had received this information in
January, they could have found these vulnerabilities even faster by concentrating their
efforts on the top 10 of our prediction. Altogether, the on-road test showed that this
method is indeed providing excellent results, suitable for practical application.

Chapter 5

Threats to Validity

There are several possible threats to the validity of my work, those are:

Limited target codebase used for evaluation. The whole process of predicting and
evaluating was done with a single project, the Mozilla Project. Hence, the ob-
served correlations could be specific to this project only. However, it seems un-
likely that the Mozilla Project is such a special project compared to other major
codebases, so this is rather a minor threat.

Defective tools. The tools used in this thesis might contain bugs themselves that lead
to falsified results. This is not unlikely, I personally found 2 bugs in the sparse
matrix implementation of e1071. However, the Vulture project was using full
matrices in an earlier stage and we verified the Vulture results using the sparse
implementation and the chance that both the sparse and the full implementation
suffer from the same bug is very low.

Inaccurate feature extraction. In Section 3.2 we already saw that it is not perfectly
possible to statically extract function calls from C/C++ source code. The inac-
curacy in this process could lead to falsified input data, however the results don’t
seem to be spoiled by this.

Broad definition of “vulnerable”. In general, we call a component vulnerable when
it is directly affected by a security vulnerability, however when doing automated
mining of these information, it is often not decidable whether a component is ac-
tually affected by a vulnerability in the context of security. When a vulnerability
is fixed, other components require changes sometimes, because a component or
function interface changed, without however being directly affected by the se-
curity impact of the vulnerability. This would lead both to inaccurate input (in
the vulnerability mapping) and inaccurate comparative data (e.g. in the on-road
test). A good example here is a component that was on rank 1 of our prediction
in the on-road test, but the change that marked this component as vulnerable was
only a version number change. The impact of this threat has yet to be evaluated
but is not in the scope of this thesis.

Evaluation misses chronological context. A prediction always implies a chronolog-
ical order, the prediction generally depends on past data and the components
that are analyzed lie in the present. The automated evaluation however, does
not honor this context when doing the splits for training and validation set. This

27

28 CHAPTER 5. THREATS TO VALIDITY

could lead to better results than one would get when forcing a chronological or-
der of components. The impact of this threat has yet to be evaluated but is not in
the scope of this thesis.

Evaluation misses grouping of vulnerable components. As described earlier in this
section, a vulnerability often causes multiple files to be fixed at once, be it be-
cause of interface changes or because a bug spans across several components.
All changed components are marked as vulnerable according to our definition in
Section 3.3. See Figure 5.1 for a simple example.

However, during the automated evaluation, these groupings are broken up and
each vulnerable component is treated as if it was affected by an its own bug.
Hence it is likely to happen that components that are affected by the same vul-
nerability are separated, some go into the training set and some into the validation
set.

If the correlations between components that suffer of a single vulnerability are
stronger, than those between components that suffer from different vulnerabili-
ties, then this might falsify the results. Figure 5.2 shows such a situation, where
basically a vulnerability “predicts itself”.

The typical scenario for a prediction of new vulnerabilities though is a “past to
present” relationship between the known and the yet unknown vulnerabilities.
The situation described in Figure 5.2 and hence the whole automated evaluation
process, is therefore very unlikely in this application case and therefore, the re-
sults in a practical prediction scenario could be worse than those observed in the
evaluation. Figure 5.3 shows this in a simplified way.

However, it is not given that the correlations inside such a group are stronger
than the correlations between different vulnerabilities, and even if this should
be case, it is not possible to say to what extend the results are affected by this.
Researching these effects is not in the scope of this work.

Component A

Component C

Component B

Component D

Component E

Component F

Bug 123 affects Components A, B and C

Bug 456 affects Components D, E and F

Bug 456Bug 123

Figure 5.1: Initial situation, two vulnerabilities, each affects several components.

29

Component A

Component C

Component B Component D Component E

Component F

Bug 456Bug 123
Training Set

Validation Set

Random Split

Component A

Component C

Component B Component D Component E

Component F

Bug 456Bug 123 A and B lead
to positive

prediction for C

D and E lead
to positive

prediction for F

Figure 5.2: The random split goes across component groups.

Component A

Component C

Component B Component D Component E

Component F

Bug 456Bug 123

Known vulnerability Unknown vulnerability

Past Present

Correlation between
different bugs

could be weaker

Figure 5.3: Correlation between different vulnerabilities could be weaker, making the
method less effective in a typical prediction scenario.

30 CHAPTER 5. THREATS TO VALIDITY

Chapter 6

Conclusion and Future Work

The automated evaluation tests clearly showed that there is a correlation between func-
tion calls and security vulnerabilities that can be used to predict unknown vulnerabili-
ties. We also saw that these predictions are not only superior to random selection under
the aspects of a cost-benefit analysis, but also highly precise (70% precision) in classifi-
cation. According to our cost model for regression, our predictions also provide results
that can be used to greatly increase the efficiency of finding security vulnerabilities.
Also, with the on-road test we saw a method for practical application in large projects,
showing us that this is not a purely theoretic result.
With this success, we can resolve on several future objectives:

Evaluating the method with different projects. Gathering further results with other
projects eleminates the threat of limitation to a single project, strengthening the
position of the described methods amongst other scientific approaches.

Evaluating other features. The framework described and used in this thesis is not
limited to function calls as features. Other features could lead to even better
results, so this is also an interesting direction of research.

IDE implementation. Implementing methods for single component prediction into
an IDE, warning developers when they code or commit something potentially
malicious, would help to prevent vulnerabilities before they even reach the final
project code.

However, there are several threats that have a yet unknown impact. Researching them
would help us to better understand how they affect the presented results, as well as
providing us methods to increase the accuracy of this and other methods. Basically, the
required tasks would be:

Chronological evaluation. This would require an evaluation model that respects the
chronological order of vulnerabilities. From the results of such a model, we
could verify that correlations also apply in this context and possibly how predic-
tors change over the time.

Assessment of file groups affected by single vulnerabilities. It is still unclear how
strong vulnerable component groups are connected to each other. If they can
be separated, then the correlation between different vulnerabilities can be exam-
ined in a better way and the strength of the correlation between these and the

31

32 CHAPTER 6. CONCLUSION AND FUTURE WORK

correlation inside such a component group could be compared. Moreover, if the
correlation in a component group affected by a single vulnerability is stronger,
this could be used to point developers to related components during the process
of fixing.

Bibliography

[1] S. Neuhaus, T. Zimmermann, C. Holler, A. Zeller. Predicting Vulnerable Soft-
ware Components. 14th ACM Conference on Computer and Communications
Security, October 2007

[2] The Mozilla Foundation. Mozilla project website. http://www.mozilla.org/, Jan-
uary 2007.

[3] Larry Wall. The Perl programming language. Perl directory.
http://www.perl.org/, 1987.

[4] The R Foundation. The R Project for Statistical Computing. http://www.r-
project.org/, 2003.

[5] Vladimir Naumovich Vapnik. The Nature of Statistical Learning Theory.
Springer Verlag, Berlin, 1995.

[6] E. Dimitriadou, K. Hornik, F. Leisch, D. Meyer, and A. Weingessel.
Misc Functions of the Department of Statistics. TU Wien. http://cran.r-
project.org/src/contrib/Descriptions/e1071.html, 2006.

[7] Brad Spengler. The grsecurity project. http://grsecurity.net/.

[8] The PaX Team. PaX patches. http://pax.grsecurity.net/.

[9] National Security Agency, Network Associates Laboratories, The MITRE
Corporation and the Secure Computing Corporation. The SELinux Project
http://www.nsa.gov/selinux/, 2001.

[10] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxi-
ang Zhai. Have things changed now? An empirical study of bug characteristics
in modern open source software. In Proceedings of the Workshop on Architec-
tural and System Support for Improving Software Dependability 2006, pages
25?33. ACM Press, October 2006.

[11] Andy Ozment and Stuart E. Schechter. Milk or wine: Does software security
improve with age? In Proceedings of the 15th Usenix Security Symposium,
pages 93-104, August 2006.

[12] M. Weber, V. Shah, and C. Ren. Cigital, Inc. A case study in detecting software
security vulnerabilities usingconstraint optimization. In Source Code Analysis
and Manipulation, 2001. Proceedings., 2001

33

34 BIBLIOGRAPHY

[13] J. Viega, J.T. Bloch, Y. Kohno, G. McGraw. ITS4: A static vulnerability scanner
for C and C++ code. In 16th Annual Computer Security Applications Confer-
ence (ACSAC’00) acsac, page 257, 2000

[14] Jeffrey Voas and Gary McGraw. Software Fault Injection: Innoculating Pro-
grams Against Errors. John Wiley & Sons, 1997.

[15] Shuo Chen, Z. Kalbarczyk, J. Xu, R.K. Iyer. A data-driven finite state machine
model for analyzing security vulnerabilities. Proceedings of the Conference on
the Dependable Systems and Networks, 2003.

[16] B.P. Miller, L. Fredriksen, B. So. An Empirical Study of the Reliability of UNIX
Utilities. Communications of the ACM 33, 12, 1990.

[17] B.P. Miller. Fuzz Testing of Application Reliability.
http://pages.cs.wisc.edu/ bart/fuzz/fuzz.html, 1990-2006.

[18] R. V. Hogg and A. T. Craig. Introduction to Mathematical Statistics, 5th ed.
New York: Macmillan, pp. 338 and 400, 1995.

[19] Adrian Schröter, Thomas Zimmermann, and Andreas Zeller. Predicting com-
ponent failures at design time. In Proceedings of the 5th International Sympo-
sium on Empirical Software Engineering, pages 18?27, New York, NY, USA,
September 2006. Association for Computing Machinery, ACM Press.

[20] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements of Sta-
tistical Learning: Data Mining, Inference,and Prediction, Chapter 13. Springer
Series in Statistics. Springer Verlag, 2001.

